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Abstract: - The attitude dynamics of a dual-spin spacecraft (a gyrostat with one rotor) with magnetic actuators attitude 

control is considered in the constant external magnetic field at the presence of the spacecraft’s own magnetic dipole 

moment, which is created proportionally to the angular velocity components (this motion regime can be called as “the 

omega-regime” or “the omega-maneuver”). The research of the dual-spin spacecraft angular motion under the action of the 

magnetic restoring torque is fulfilled in the generalized formulation close to the classical mechanics’ task of the heavy 

body/gyrostat motion in the Lagrange top. Analytical exact solutions of differential equations of the motion are obtained 

for all parameters in terms of elliptic integrals and the Jacobi functions. New obtained analytical solutions can be classified 

as results developing the classical fundamental problem of the rigid body and gyrostat motion around fixed point. The 

technical application of the omega-regime to the angular reorientation of the spacecraft longitudinal axis along the angular 

momentum vector is considered.  
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  Introduction 

 

An analytical investigation of the angular motion of rigid bodies systems together with its 

practical applications in the field of the attitude dynamics of spacecraft/satellites is one of the 

important actual scientific problems of the fundamental mechanics and the space flight dynamics, 

including classical tasks of the rigid body angular motion [1, 2], modern developments of these 

classical tasks with applications [3-7], as well as the rigid bodies and spacecraft regular and chaotic 

dynamical aspects [8-18]. As it is well known, analytical solutions for the system dynamical 

parameters allow to completely describe the system motion and to predict its time-evolutions and, 

moreover, analytical solutions/dependencies can be used for the parametrical synthesis of the 

spacecraft (SC) dynamics.  

In this work the analytical solutions for the motion dynamics of the small SC (micro-/nano-

satellites) with a magnetic control system are obtained. Besides the magnetic actuators (such as 

magnetic coils and/or torque rods), the SC investigated in the research contains one coaxial 

rotor/reaction-wheel with its own constant longitudinal angular momentum (Δ), so it is possible to 

consider the SC as the dual-spin spacecraft (DSSC) with the magnetic attitude control. The DSSC 

motion is considered in the constant external magnetic field. The own dipole moment of the DSSC is 

created by the magnetic attitude control system in the form proportional to the angular velocity 

components (this motion mode can be called as “the omega-regime”). The constancy of the external 

magnetic field in this research is conditioned by the consideration of the angular motion of the DCCS 
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at the orbital motion of its center mass along the short segment of the orbit, when the vector of the 

magnetic induction of the geomagnetic field practically does not change. Also in this research the 

absence of the gravitational torque is assumed, as differences among the values of the principal 

moments of inertia are usually small for micro-/nano- spacecraft. 

The interaction between the external magnetic field and the DSSC own magnetic dipole 

moment generates the external torque affecting the attitude dynamics, that was studied in numerous 

publications with different formulations, for example [11-25]. As it is presented in previous works 

dedicated to the theme of SC dynamics with magnetic actuators [11-16], the control of the SC angular 

motion can be implemented with the help of changing the value of the SC own magnetic dipole 

moment (its components on the SC connected axis), which is created by magnetic coils/rods, and 

which interacts with the geomagnetic field. The possible control laws can use the information about 

the current angular parameters (the Euler angles, quaternions, the angular velocity components), and 

about the external magnetic field [27, 28]. 

It is very important to underline that the SC attitude dynamics as the angular motion of rigid 

bodies systems under the action of external torques was and still is one of the most interesting parts of 

the classical mechanics. By this reason, it is possible to characterize the presented research as a 

continuation of the development of fundamental problems of classical dynamics. In this connection, it 

is worth to indicate, that in this work the research of the DSSC/gyrostat angular motion under the 

action of the magnetic restoring torque is fulfilled in the generalized formulation close to the task of 

the motion of the Lagrange top [1-6] with obtaining analytical exact solutions for the motion 

parameters in terms of elliptic integrals and the Jacobi functions.  

 

1. Mechanical and mathematical models 

 

As previously mentioned, the magnetic actuators of the SC produce the magnetic dipole 

moment (m), which interacts with the Earth’s magnetic field (with the vector of the magnetic 

induction Borb) and generates the corresponded external torque: 

 

(1.1)    m orb M m B  

 

In this work, we will describe the SC angular motion on a quite short time-interval, which 

corresponds to a short sector of the trajectory motion of the SC mass center, when the vector of the 

induction of the Earth’s magnetic field Borb practically does not change its direction and magnitude. In 

this case we can assume the constancy of the vector of the induction of the Earth’s magnetic field in 

the inertial space  constorb B . 

In this research, the control law for the magnetic actuators is defined by the current values of 

the angular velocity components. Let us consider the control law, which is tracking the signals from 

the SC angular velocity sensors and forming the proportional components of the magnetic dipole 

moment: 

 

(1.2)    km ω   

 

where ω is the vector of the SC angular velocity (in the connected SC coordinates frame this vector 



has the components ω = [p, q, r]T), and k – is the constant coefficient. This control law (1.2) can be 

considered as the particular case of the generically defined control described in [12-15]: 

 

(1.3)    
2

p vk k  u q Iω   

 

where kp, kv, ε are constants; u is the modified control-vector (corresponding directly to the dipole 

moment’s m components in the connected SC coordinates frame); q – is the vector of quaternions; I – 

is the SC inertia tensor. By the reason of the proportionality of the dipole moment components to the 

corresponded components of the angular velocity vector ω, let us call the regime of the angular 

motion with the dipole moment modulation (1.2) as “the ω-regime”. 

 It is very important to note that the SC angular motion under the action of the magnetic torque 

(1.1) with control law (1.2) in presence of a constant magnetic induction field Borb is interesting from 

the side of the SC natural dynamics investigation, and in terms of classical mechanics. The defined 

case of motion can be characterized as the development of classical tasks of rigid body dynamics. This 

case is close to the Lagrange top ideology: the external restoring/tilting torque is presented, but with 

the complex modulation of the torque magnitude (which is proportional to the value of the angular 

velocity). 

 As it was indicated above, we intend to consider the attitude dynamics of the SC at the short 

sector of its orbital motion. In these conditions, it is possible to investigate the angular motion of the 

SC around the center of mass C (fig.1) under the action of the external torque created by the 

interaction between the SC own magnetic dipole moment (1.2) and the external magnetic field with 

the constant magnetic induction Borb, which defines the “selected” direction (the axis CZ) in the 

inertial space, described by the main inertial frame of coordinates CXYZ. The angular position of the 

SC and its connected coordinates frame Cxyz relatively the selected inertial direction CZ is described 

by the well-known directional cosines:  1 cos , ,CZ Cx    2 cos , ,CZ Cy    3 cos , .CZ Cz   

 

 
Fig.1 – The DSSC schematic construction and coordinates systems 



 

Then the magnetic induction vector and the magnetic dipole moment will have the following 

components in the body-fixed reference frame Cxyz: 

 

(1.4)       1 2 3, , ; , ,
T T

orb orbB k p q r   B m  

 

 Using (1.1) and composing vectors (1.4), let us write the dynamical equations [6-9] of the 

DSSC (fig.1) and the kinematical equations for directional cosines of the CZ axis relatively the 

direction of the constant vector Borb: 
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(1.6)    
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where  ,b rA A A   b rC C C  ;  , ,b b bA A C  are the axial inertia moments of the dynamically 

symmetrical main SC’s body in the connected frame;  , ,r r rA A C  are the axial inertia moments of the 

dynamically symmetrical rotor in its own connected frame; M   is the internal torque acting on the 

rotor from the side of the main body. Here we also note the connections between the directional 

cosines and the Euler angles (as we can see, the precession angle ψ is not involved in the dynamics): 

 

(1.7)    
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 In this research we will consider the dynamics of our coaxial SC (the main body and the rotor) 

at the absence of theirs interaction (MΔ=0) and, therefore, everywhere below Δ=const. 

 

2. The first integrals of the motion 

 

For the considered case four conservation laws hold. Firstly, the constant value of the CZ-unit-

vector gives the trivial first integral (the conservation law): 

 

(2.1)    
2 2 2

1 2 3 1       

 

Secondly, the projection of the angular momentum of the system on the “selected” axis CZ are 



constant by the reason of the absence of corresponding projections of external torques (1.1): 

 

(2.2)     1 2 3 constb ZAp Aq C r K        

 

The third integral follows from the combination of dynamical equations (1.5) (thus, the first 

equation from (1.5) is multiplied by p, the second – by q, the third – by r, and the corresponding 

results are summarized and integrated): 

 

(2.3)     2 2 2 constbA p q C r h     

 

The fourth (last) integral can be simply obtained: as can we see, from the third equation (1.5) 

and the last equation (1.6) the expression follows: 

 

(2.4)       3b orb

d
C r kB

dt
     

 

and after the integration we obtain  

 

(2.5)    3b orbC r kB D      

 

where D is the constant defined by the initial conditions. The same result in the revised form can be 

presented as the last “first” integral: 

 

(2.6)     
22

3

1
b orb

b

C r D kB
C

    

 

Also the important identity can be written with the help of regular transformations [1], taking 

into account the expression (2.1): 

 

(2.7)            
2 2 2 2 2 2 2 2 2

1 2 1 2 1 2 31p q q p p q p q                 

 

So, the found first integrals and the identity (2.1)-(2.7) allow to find the analytical solutions for the 

motion dynamical parameters, including explicit time-dependencies for the angular velocity 

components and for kinematical parameters (the directional cosines and/or the Euler angles). 

 

3. The obtainment of the exact explicit solutions 

 

With the help of the last kinematical equation (1.6), and the first integrals (2.1)-(2.6) we can 

rewrite the expression (2.7) in the form of the differential equation: 

 



(3.1)        
2 2 2 2
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where the usable designations is involved 
3

df

s  . 

 

In view of expressions (2.6) and (2.5), the differential equation (3.1) takes the shape: 

 

(3.2)       
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where poly4(s) is the 4th power polynomial, that refers the integral to the elliptical integrals [29-31]: 

 

(3.3)    
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To write the explicit solution for the s-variable in terms of the Jacobi-functions we should invert 

the elliptic integral (3.3). By this reason, it is needed to fulfill the change of variables: 

 

(3.4)    
1

w
s

w

 



  

 

where constants α and β (the numerical values) are selected from the requirements of nulling the 

coefficients of terms of the first and the third powers of the numerator of the recalculated polynomial 

({p3, p1}→0):  

 

(3.5)     
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therefore the values of constants α and β follow from the algebraic system of two polynomial 

equations: 

 

(3.6)          1 3, 0; , 0 ,p p          

 

The Polynomial (3.5) can be written in a factored form, according to the sign of the coefficient p4 and 

the roots {X1, X2} of the auxiliary quadratic equation 
2

4 2 0p X p X p   (where values of the roots are 

denoted for the convenience as 
2 2

1 2;X a X b    ). So, the five cases of this factorized form are 

possible: 
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The forms of the polynomial factorizations (3.7) define the cases of the elliptic integral (3.3) inversion 

after the transition to the new variable w: 

 

(3.8)    
 

    0 0

2

4 4
poly ( ) 1 poly

s w

s w

dwds
t

s w s w

 
  


   

 

So, the integral (3.8) invertion in the first case (3.7)-1) can be implemented in the form: 
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or 

(3.9) 

       

0

4

0 0
22 2 2 2 2 2 2 2

; const

wa

w ab

a pa dw a dw
t J J

A Ca w w b a w w b 
   

   
   

 

In this form (3.9) the elliptic integral is immediately inversed [29] to the dn(x|m) elliptic function: 

 

(3.10)   
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4

0 2 22
dn | ; ; ;

b

a p a b a b
w a x m x t J m or m

a aA C 

  
     

  
 

 

Returning to the natural variable γ3, we finally obtain the main exact analytical solution (for the 

nutation angle): 

 



(3.11)     
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To confirm the main exact solution (3.11) we can present the comparative results of the differential 

equations (1.5) and (1.6) numerical integration (the line), and the formula (3.11) evaluation (dots), that 

is depicted at the figure (fig.2). Simultaneously, in addition to the fig.2, it is important to present the 

numerical integration results for all of the dynamical parameters. The hypothetical numerical 

parameters for calculations (fig.2, 3) are following: Ab=12, Bb=12, Cb=6, Ar=10, Cr=6 [kg∙m2]; p0=0.4, 

q0=0.0, r0=0.1 [rad/s]; Δ=1 [kg∙m2/s];  γ10=0.6,  γ20=0.6,  γ30=0.5292;  kBorb=-8 [N∙m∙s];  KZ=6.1266, 

D=-2.6332 [kg∙m2/s]; h=3.58 [kg∙m2/s2].  

Then the following concretized algebraic equations (3.6) are actual: 
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with the solutions α=-0.3011, β=0.9933 (one of the possible), and polynomial (3.5) coefficients:  

p4=-3.4805; p2=3306.8803; p0=-428.0900, and its corresponding roots: X1=0.1295; X2=949.9867. 

Then the elliptic module and defined integral are m=0.9999 and J0=-3.5494; we can consider this case 

as the interesting extreme case (fig.2, 3) with the elliptic module close to the unit value. 

 

 
Fig.2 – The comparative modelling results for γ3(t): 

the line – the numerical integration; dots – the analytical solution (3.11) 

 



 
Fig.3 - Results of the numerical calculations 

 

For the other cases (3.7)-2) – (3.7)-5) the analytical solutions can be obtained by analogy: 
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where the classical elliptic Jacobi functions take place: cn(·) – the elliptic cosine, sn(·) – the elliptic 

sinus, nc(·)=1/cn(·), sc(·)=sn(·)/cn(·). 

 Now, from the expression (2.5) it is possible to obtain the function r(t) as the already found 

analytical solution: 

 

(3.13)       3orb br t kB t D C       

 

Let us to change the variables for the equatorial components of the angular velocity: 

 

(3.14)    cos ; sinp G F q G F    



Then from the energy integral (2.3) we will have for the amplitude of the equatorial velocity the exact 

value: 
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It is easy to write the identity [1]: 
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From the first and the second equations (1.5) the expression follows: 
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From the first integral (2.2) the expression can be found: 
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Taking in view the expressions (3.16)-(3.18), the differential equation can be constituted: 
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From the equation (3.19) the formal exact explicit quadrature follows: 
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Here it is important to note, that in the integral (3.20) the integration of elliptic functions is fulfilled, 

and the corresponding result of integration can be expressed in terms of the theta-functions [29] (in 

this work we will not obtain the final explicit expressions for this result). 

The expressions (3.20) and (3.15) fully define the analytical solutions for the angular velocity 

equatorial components p(t) and q(t).  

The analytical solution for γ3(t) (e.g. (3.11)) allows to consider (after differentiating by time) 

the last differential equation (1.6) as the algebraic equation. Adding to this algebraic equation the 

expression (3.18), we take the complete linear algebraic system of equations relative the γ1(t) and γ2(t): 
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which allows to write the final analytical solutions for the γ1(t) and γ2(t): 

 

(3.21) 
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So, the time-dependencies for the all dynamical parameters of the system at the realization of the ω-

regime are written in exact analytical form, and the considered task is fully solved. The obtained exact 

expressions can be applied not only to the analysis, but also to the parametrical synthesis of the DSSC 

motion dynamics at the implementation of the ω-regime.  

 

4. Using the ω-regime in tasks of the spacecraft attitude dynamics and control 

 

The analytical solutions from the previous section can be used for the design of a new scheme of 

the attitude reorientation of the dual-spin spacecraft (gyrostat-satellite). As we will see below, the ω-

regime is the quite simple way to reorient the longitudinal axis of the DSSC strongly along the 

direction of the angular momentum vector starting from the arbitrary direction. This reorientation of 

the DSSC axis corresponds to the transition of the DSSC to its ideal spin-stabilized spatial position – 

this is the most appropriate passive dynamics of the DSSC with its preferable attitude. 

 

4.1. The main idea and the algorithm of the DSSC reorientation 

 

To construct the algorithm of the spacecraft reorientation into the stabilized direction along the 

angular momentum vector, it is worthwhile to recall the properties of the torque-free motion of a 

symmetrical rigid body (spacecraft) around its center of mass. As it is well known, in the free motion 

the longitudinal component of the angular velocity r(t) will be constant. In addition, a constant value 

retains for the nutation angle  t  evaluated relatively the direction of the vector of the angular 

momentum (K) of the free motion: 

 

(4.1)        3const; cos constbC r
r t r t t

K
 

 
       

 

The idea of the spatial reorientation using the ω-regimes is based on the alternation of intervals 

of the motion with switched on ω-regimes and intervals of the free motion (with switched off all 

magnetic torques). Here, as we will show, to fulfill the spatial reorientation of the longitudinal axis 

strongly along the angular momentum vector it is needed to create the ω-regimes in the corresponding 

time-intervals when the time-dependence of the angular velocity component r(t) has the half-period of 

the increase of its magnitude, evaluated by the solution (3.13). Let us call these time-intervals as the 

“growth intervals” (magenta columns at the fig.4); and the dynamics of the spacecraft on such 

alternating intervals we will call as the “growing dynamics”.  



 

 
Fig.4 – The “growth intervals” with the increase of the r(t)-value by the solution (3.13) 

 

The time-history of the DSSC dynamical parameters at the implementation of the “growing 

dynamics” is depicted in the figure (fig.5). The graphics (fig.5) are obtained by the numerical 

integration of the dynamical equations with the impulsive actuation of the magnetic dipole (1.4) on 

the “growth intervals”.  

Between the growth intervals (where the magnetic torques are disabled) the angular velocity 

component r(t) is constant because the motion here is free. The same dynamical behavior has the 

directional cosines  3 t  evaluated relatively the current angular momentum vector (it changes its 

direction and magnitude passing through growth intervals). We can see the coincidence of dynamical 

behaviors of the time-dependences r(t) and  3 t in the qualitative sense (fig.5).  

 

 
Fig. 5 – The dynamical parameters of the spacecraft in the “growing dynamics” 

 

As it follows from modeling results (fig.5), the growing dynamics allows to change values of 

r(t) and  3 t  passing through the growth intervals. This change of the dynamical parameters we can 

use to reorient of the spacecraft, starting from the one regime of free motion and finalizing in the 

another one. 



Moreover, the first step of the growing dynamics (the first initiated ω-regime) always 

inevitably leads to increasing the r(t)-value, because the growth intervals are selected using the 

analytical solution (3.13) as the time-intervals which exactly provide the half-period of increasing the 

r(t)-magnitude. From the modelling (fig.5) results the confirmation of increasing the r(t) magnitude 

follows not only in the first growth interval, but also in the next few steps. Nevertheless, after the 

increase of the r(t)-value in few growth intervals, the backward evolution with decreasing the r(t)-

value is realized in the following steps. This dynamical evolution can be explained by the 

magnification of differences between the current values of the dynamical parameters (continuously 

changing during the passage through the alternating regimes) and their predefined analytical values 

(and first of all, the elliptic module m value changing the period of oscillations). In any case, the first 

growth intervals are applicable to increasing the r(t)-value and, therefore, to increasing the  3 t  – 

this corresponds to the improvement of the current attitude of the spacecraft, since the longitudinal 

axis of the DSSC has become closer to the direction of the vector of the angular momentum. Also it is 

possible to note the synchronous evolution (fig.5) of the direction of the angular momentum vector 

relatively the “vertical” axis CZ, which is described by the angle  ,CZ  K . 

So, this properties of the attitude evolution during the stepwise creation of ω-regimes can be 

used to the complete attitude reorientation of the DSSC along the angular momentum vector by the 

way of the initiation of several series of the “growing dynamics” at the recalculation of values of 

growth intervals period by the analytical solution for the each series.  

First of all, we should define the period of the current stepwise ω-regime. From the analytical 

solutions (3.13) and (3.11) it easy to obtain the full period of dynamical parameters using the known 

properties of the elliptic functions including the information about periods and poles [29]: 

 

Table 1 

 Pole iT'  Pole T+iT', Pole T Pole 0 

Half-period iT'  sn s cd s dc s ns s 

Half-period T+iT' cn s sd s nc s ds s 

Half-period T dn s nd s sc s cs s 

 

The real and imaginary “quarter-periods” T and T' [29] correspond to the complete elliptic 

integrals of the first kind: 

(4.2)   
    
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




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  
   

Due to describing the real motion of the spacecraft, it is necessary to use only real part of the elliptic 

functions. Then, as it follows from the solution (3.10) at the obtained value of the elliptic parameter m 

the period of the function s(t) is equal to 2T. This value T allows to create the correct impulsive 

actuation of the ω-regime on the corresponded series of growth intervals (fig.4) at the evaluated m and 

initial phase J0 (3.9). 

In purposes of practical implementation of the considered impulsive technique of the growing 

dynamics, we can suggest the universal scheme with only one (only first) growth interval for each 

series of impulses (i.e. the single-impulse-series). Then the algorithm of the DSSC attitude 

reorientation will have the following structure (fig.6). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6 – The algorithm of the spacecraft reorientation using series of single-impulse-ω-regimes 

 

The main condition checked at the each step of the algorithm is the obtainment of the spatial 

position along the vector of the angular momentum 
3( 1)   with the predefined accuracy value ε<<1. 

The implementation of this technique will be considered in the next section, where the confirming 

modeling results are presented. 
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4.2. The reorientation algorithm numerical modeling 

 

As previously mentioned, the reorientation idea is based on the alternating regimes of the 

torque-free motion and the ω-regimes on the growth intervals. In the case of the universal algorithm 

(fig.6) only one (the first) growth interval is recommended, where we have the fully correct 

correspondence of the current motion parameters (which are considered as the initial values for the 

analytical solutions) and parameters of the ω-regime (which are calculated by the analytical solutions). 

However, for the rapid demonstration of the idea in the framework of subsequent numerical modeling, 

let us use more than one growth intervals, that, certainly, impairs the right correspondence between 

the current motion parameters and parameters of the ω-regime for each following interval from the 

current series.  

At the figures (fig.7, 8, 9) nine consistent series of the growing dynamics are presented for the 

case of small micro/nano-spacecraft. Each fragment of the figure contains time-interval of 100 

seconds, where only some of initial growth intervals are active (depicted as magenta columns), and 

other time corresponds to the torque-free motion of DSSC. It is possible to see from these figures that 

the r(t)-component and 
3( )t  value increase their magnitudes on each next series of growth intervals. 

We used the following common parameters for all numerical calculations (fig.5-9): Ab=0.13, 

Bb=0.13, Cb=0.05, Ar=0.05, Cr=0.02 [kg∙m2];  Δ=0.03 [kg∙m2/s]; kBorb=0.005 [N∙m∙s]. These values 

are quite applicable to the examination of the hypothetical qualitative dynamics of small DSSC in the 

geomagnetic field in the case of the angular motion of micro/nano-spacecraft along the low orbit 

(Borb~50 [μT]) with powerful magnetic torquers ( ~ 50 150k m ω  [A∙m2]). The initial conditions 

and modeling parameters of the series of the ω-regimes are presented the table (tabl.2). 

 

Table 2 – The modeling parameters  

  

Fig.7-9 p0 [1/s] q0 [1/s] r0 [1/s] γ10 γ20 γ30 m J0 T [s] 

(1) 1.1 0.5 0.2 0.387 0.2 0.9 0.861 -0.018 2.141 

(2) 0.885 -0.547 1.183 0.258 -0.964 -0.061 0.859 -1.408 2.136 

(3) -0.002 -0.877 1.590 -0.623 -0.338 0.705 0.855 -0.698 2.124 

(4) 0.537 0.454 1.875 0.968 0.115 0.224 0.846 -1.504 2.099 

(5) -0.221 0.498 2.056 -0.695 0.626 0.353 0.826 -1.636 2.051 

(6) -0.216 0.222 2.225 0.188 -0.017 0.982 0.738 -0.167 1.893 

(7) 0.078 -0.136 2.282 0.028 0.297 0.955 0.637 -0.276 1.781 

(8) -0.069 0.039 2.296 -0.498 -0.080 0.864 0.608 -1.434 1.757 

(9) -0.027 -0.007 2.301 0.282 -0.310 0.908 0.462 -1.134 1.667 

 

 

 



 
  (1)        (2)          (3) 

 

 
  (4)        (5)          (6) 

 

 
  (7)        (8)          (9) 

 

Fig.7 – The modeling results for the time-history of angular velocity components: 
p(t) – red; q(t) – green; r(t) – blue; magenta columns – the implemented growth intervals;  

yellow - inactive growth intervals; black line – the analytical solution (3.13) 
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Fig.8 – The modeling results for the time-history of directional cosines: 

1( )t   red; 
2 ( )t   green; 

3( )t   blue; 
3( )t  black;  blue dots – the analytical solution (3.11) 

 

It is worth to show separately the first and the last series of the growing dynamics (fig.9). As can we 

see, the stepwise saturated increase of the r(t)-component starting from small initial value (fig.9-a) and 

finishing on the maximal saturated level (fig.9-b) at zero-values of p(t)- and q(t)-components of the 

angular velocity. Also the supreme increase of the 
3( )t  value is realized, starting from small value 

(fig.9-c) and finishing on the level 
3( ) 0.99999t  . Such parameters evolutions mean the fully 

implementation of the correct reorientation of the DSSC from the “arbitrary” initial spatial position 

into the final target attitude at the coincidence of the longitudinal axis Cz of the DSSC with the 



direction of the system angular momentum (realized with the accuracy ε=10-5). Herewith, the vector 

of the angular momentum is getting closer to the “vertical” vector Borb in the passages through these 

series of ω-regimes (from (fig.9-e) to (fig.9-f)). 

 

     
     (a)      (b) 

 

     
     (c)      (d) 

 

     
        (e)      (f) 

Fig.9 – The parameters evolution from the first to the last series of ω-regimes: 
(a), (b) – the angular velocity components; (c), (d)- directional cosines; (e), (f) – the Θ-evolution 

 



So, the numerical modeling showed the correct implementation of the suggested stepwise 

algorithm of the DSSC reorientation along the vector of the angular momentum using the series of 

growth intervals with analytically predefined parameters of each ω-regime. This algorithm is based on 

the continuous transition through the alternating intervals of the torque-free angular motion and the 

motion in the ω-regimes. During this transition the magnitudes of the p(t)- and q(t)-components 

reduce to the zero-value (it corresponds to the final absence of the equatorial rotation of the DSSC); 

the longitudinal component of the angular velocity r(t) takes its final supreme magnitude and the 

longitudinal DSSC axis Cz coincides with the direction of the angular momentum vector  3( ) 1t  . 

Thus, this stepwise algorithm leads to the complete dissipation of the transversal component of the 

angular velocity at the mechanical energy transfer into the rotation of DSSC about its longitudinal 

axis; as the result, the DSSC longitudinal axis will be strongly located along the direction of the 

angular momentum vector. 

 

Conclusion 
 

In this work, the attitude dynamics of dual-spin spacecraft and gyrostat-satellites is considered 

under the action of magnetic control system. The motion was studied in the constant external magnetic 

field and at the omega-regime implementation, when the control system forms the spacecraft magnetic 

dipole moment proportionally to the angular velocity vector. The analytical solutions for all dynamical 

parameters in terms of elliptic integrals and the Jacobi functions are most important result in the 

framework of the DSSC attitude dynamics. These new analytical solutions can be characterized as the 

results developing the classical fundamental problem of the rigid body and gyrostat motion around 

fixed point. Together with the analytical research, the control algorithm for the angular reorientation 

of DSSC using the omega-regime was constructed. This algorithm allows to reorient the longitudinal 

axis of the spacecraft along the angular momentum vector – such attitude is the most preferred spatial 

position of gyroscopically stabilized satellites, including dual-spin spacecraft and gyrostats. So, the 

fulfilled analytical investigation and the suggested technical application can be quite actual in the 

tasks of space-flight dynamics of small spacecraft and micro-/nano-satellites. 
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